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Abstract
We recently developed a multivariate method that selects a subset of discriminative genes for sample
classification based on gene expression data.  The method combines a search tool, a genetic algorithm
(GA), and a non-parametric pattern recognition method, based on the k-nearest nearest neighbors (KNN).
We begin by selecting many subsets of genes that can discriminate among classes of samples using a
training set. Subsequently, the genes are ranked according to the frequency of gene selection.  The top-
ranked genes (e.g. 50) are then used to classify test set samples.  For a widely-available set of leukemia
data, the top 50 genes identified by the GA/KNN method not only correctly classified 33 of the 34 test set
samples, but also discovered the two distinct clinical subtypes within ALL without applying prior
knowledge.  The method has been successfully applied to several expression data sets.  It may be used to
identify a subset of informative genes (biomarkers) for sample classification for a variety of profiling
studies including tumors.

Introduction
Microarray technology has made it possible to monitor the global gene expression patterns of cells.  It has
been used to profile the gene expression of normal and transformed human cells in several tumors
including colon (Alon et al., 1999), leukemia (Golub et al.1999), prostate (Bubendorf et al., 1999), breast
(Perou et al., 2000), lymphoma (Alizadeh et al., 2000), and melanoma (Bittner et al., 2000) as well as the
NCI’s 60 human tumor cell lines (Ross et al., 2000).  These studies may shed light on the mechanisms of
cell maltransformation.  Therefore, they may be useful in elucidating the mechanisms involved in
carcinogenesis and in identifying characteristic patterns for cancer diagnosis and classification.

Methods that mine large expression data sets for sample classification have been reported (Golub
et al., 1999, Ben-Dor et al., 2000, Bittner et al., 2000, Li et al., 2001a & 2001b, Perou et al., 2000).  The
GA/KNN method that we developed is a multi-dimensional classification method.  It not only selects a
small subset of genes that jointly discriminates among classes of samples (e.g. normal vs. tumor) but also
assesses the relative predictive importance of all genes for sample classification (Li et al., 2001a & 2001b).
We begin by selecting a subset of genes that can discriminate between different classes of samples.  When
many such subsets of differentially expressed genes are obtained independently using the GA/KNN
method, the relative importance of genes for sample classification can be assessed by examining the
frequency of selection of the genes into these near-optimal subsets.  The most informative set of genes
(class predictor) is subsequently used to classify an “unknown” (validation) set of samples.  We have
applied the method to several data sets including a colon data set (Alon et al., 1999), a lymphoma data
(Alizadeh et al., 2000), and as well as a toxicogenomics data set generated at the National Institute of
Environmental Health Sciences (to be published).  Herein we report the detailed analysis of the leukemia
data (Golub et al., 1999) using the GA/KNN method to find sets of genes that can distinguish between
acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).

Methods
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Data set. The original leukemia data were downloaded from the web (http://www.
genome.wi.mit.edu/MPR).  The data contain the expression levels of 6,817 genes across 72 samples, of
which 47 had been classified as ALL and 25 as AML (Golub et al., 1999).  We excluded any genes with
expression levels below 50 in more than 80% of the 72 samples.  The number of genes remaining after this
filtration is 5545.  The expression values were then transformed as follows.

where x is the expression level, c is a constant and was set to 0.

We divided the data set into a training set (first 38 samples) and a test set (34 samples) following
Golub et al. (1999).  The training set was used to obtain a subset of genes that can discriminate between
AML and ALL.  The 50 most informative genes obtained using the training set were subsequently used in
validation, to predict the classifications of the test set samples.

The GA/KNN method.  Details of the GA/KNN method have been reported (Li et al., 2001a) and are
available on the web (http://chun.niehs.nih.gov/~leping).  The method employs a non-parametric pattern
recognition method, the k-nearest neighbor (KNN) (see e.g., Vandeginste et al., 1998), and a searching tool,
a genetic algorithm (GA) (for a review, see Judson 1997).  The KNN method was used as the classification
tool that distinguishes between discriminative and non-discriminative sets of genes while the GA was used
to choose a relatively few subsets of genes (from many possible combinations) for testing.

In brief, each sample is represented by a pattern of expression that consists of d genes.  Each
sample is then KNN classified according to the class memberships of its k (arbitrarily set to 3) nearest
neighbors, as determined by the Euclidean distance in the d-dimensional space.  If all of the 3 nearest
neighbors of a sample are ALL, the sample is classified as ALL; similarly for AML.  If the 3 nearest
neighbors are not of the same class, the sample is considered unclassifiable.

The GA is used to search high-dimensional space, since selecting an optimal subset of optimal
genes from a large gene pool is a combinatorial problem.  Initially, a population of randomly selected
“chromosomes” is generated.  Each “chromosome” consists of d genes.  The “fitness” (merit) of each
“chromosome” is determined by its ability to classify the training set samples.  If the class memberships of
a training set sample and its three nearest neighbors in the particular d-dimensional space defined by a
“chromosome” agree, a score of 1 is assigned to that sample.  These agreement scores are summed across
the training set and we refer to this sum divided by the number of samples (here 38) as the fitness score.
Thus, the GA is used to optimize the fitness score.

A set of d genes was considered discriminative in which each sample and its three nearest
neighbors are of the same class for at least 37 of the 38 training set samples.  To study the sensitivity of
gene selection to the choices of d, we systematically examined various sizes of d (e.g., 5, 10, 20, 30, 40, 50,
70, and 100).  For each d, 20,000 discriminative sets of genes (referred to as the near-optimal
“chromosomes”) that potentially discriminate between AML and ALL were obtained.  Subsequently, the
genes were ranked according to the frequency of selection into near-optimal “chromosomes”.  The most
frequently selected genes (e.g. top 50) were then used to classify the test set samples.

Results
Frequency of gene selection and choice of d

The statistical z score, based on normalizing the frequency with which each of the 5,455 genes was
selected in the 20,000 solutions for each d, is shown in Figure 1.  A few genes dominate the selection when
d is small (e.g. 5).  As d increases, the pattern of gene selection stabilizes.  The correlation between the z
scores for two choices of d is shown in Figure 2.

To examine the reproducibility of gene selection, an additional 20,000 near-optimal
“chromosomes” were obtained independently for each d.  Again, each near-optimal “chromosome”
contains d genes that can discriminate between AML and ALL for the training set samples.  The correlation
between the z scores for two independent runs for each d is shown in Figure 3.  The reproducibility is
apparently high for all d except d = 100.  For large d (e.g. 100), gene selection is likely contaminated with

f(x) =

c + log10(x)         x > 1
c                          x ≥-1 and x ≤ 1

-c-log10(abs(x))    x < -1

http://www.genome.wi.mit.edu/MPR)
http://www.genome.wi.mit.edu/MPR)
http://chun.niehs.nih.gov/~leping)
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noise.  Furthermore, the calculation becomes computationally expensive as d increases.  Taken together, a
choice of d between 20 and 70 appears to yield a stable gene selection for the leukemia data set.  We chose
a d of 40, taking reassurance from the fact that the selection of optimal genes is evidently insensitive to this
choice.

Top genes
The genes were ranked based on the frequency of gene selection (d = 40) and the top 50 genes are

listed in Table 1.  It is noteworthy that many more were selected with high z scores.  The complete list of
5,455 genes based on frequency rank is available on the web (http://chun.niehs.nih.gov/~leping).

Among the top 50 genes, several were myeloid, T-lymphocytic- or B-lymphocyte-specific
antigens or surface markers.  For instance, CCAAT/enhancer binding protein δ (C/EBPδ) is a
transcriptional regulator involved in myeloid cell differentiation (Sterneck et al., 1998).  Myeloperoxidase
(MPO) is a well-established marker of myeloid differentiation (Austin et al., 1998; Winterbourn 2000).
The CD2 is a T-cell antigen that has been used as a diagnosis marker for T-cell ALL (Manabe et al., 1998).
It plays an important role in mediating the interactions between human T lymphocytes and accessory cells
(Brown et al., 1989).  The B-cell lymphocyte kinase, Blk, is a src-family protein tyrosine kinase that is
expressed preferentially in B lineage cells (Malek et al., 1998).  Blk may play an important role in B cell
proliferation (Malek et al., 1998).  Immunoglobulin-associated beta (B29), also called CD79b, belongs to a
family of surface adhesion molecules on B lymphocytes.  B29 and the associated transmembrane protein
mb1 are crucial for assembly and membrane display of the B-cell receptor (Hombach et al., 1990).
Mutation of B29 has been associated with chronic lympocytic leukemia (Gordon et al., 2000).  The octamer
binding factor 1 (OBF-1) is a B-lymphocyte-specific transcription factor (Schubart et al., 1996; Matthias
1998).  It has been suggested that over-expression of OBF-1 might play a role in the pathogenesis of
germinal center-derived B cell lymphoma (Greiner et al., 2000).  CD19 is also B lymphoid antigen and
used as a diagnosis marker for B-cell ALL (Scheuermann & Racila, 1995).  The TCL1 is an oncogene
located on chromosome 14 band q32.1 that has been implicated in the development of mature T cell
leukemia (Virgilio et al., 1993; Pekarsky et al., 2000).

Several oncogenes or tumor antigens were also frequently selected, for instance, the proviral
integration oncogene spi1, GRO2 oncogene, and carcinoembryonic antigen precursor gene.

Classification of the test set samples
The GA/KNN method correctly classified 33 of the 34 test samples using three training set

neighbors (2 or 3 must agree) by KNN using the top 50 genes (Table 2).  When the 100 top-ranked genes
were used, a similar result was obtained except that sample AML54 was classified as ALL.  As more genes
were included, contaminating the system with high-dimensional noise, the number of misclassified samples
increased.  In fact, when all 5,455 genes were used, 9 of the 34 test set samples were incorrectly classified.
This result emphasizes that not all expression data are relevant to the distinction between ALL and AML.
Interestingly, nearly all the misclassified samples were AML, suggesting that the ALL samples are
relatively easy to classify.  Among those that were misclassified, AML66 was consistently classified as
ALL (Table 2).  When all 72 samples were used for training, AML66 remained classified as ALL (data not
shown).  Together, these results show that AML66 is an outlier.

When the test set was combined with the training set, a postprocessing cluster analysis of the top
50 genes using a cluster analysis program (Eisen et al., 1998) showed that the AML samples and ALL
samples were clustered together correctly except AML66 (Figure 4).  Furthermore, the top 50 genes found
by the GA/KNN method revealed the existence of two subtypes within ALL without applying any prior
knowledge.  Among the 47 ALL samples, 9 has been clinically classified as T-cell ALL (ALL2, ALL3,
ALL6, ALL9, ALL10, ALL11, ALL14, ALL23, and ALL67), and the remaining as B-cell ALL.  When
clustered using the top 50 genes, each of the 9 T-cell ALL samples were on one branch of the ALL tree
together with two B-cell ALL.  These results indicate that the GA/KNN method is capable of identifying
genes that discriminate not only between the ALL and AML, but that the method may also unmask
clinically meaningful subtypes, through subsequent cluster analysis.

We also applied principal component (PC) analysis (see, e.g., Vandeginste et al., 1998) to the 72
samples using the top 50 genes.  The method of single value decomposition [(SVD) from Numerical
Recipes (Cambridge, MA)] was applied to the correlation matrix.  The principal components were obtained
by projecting the original data points that have been transformed (see methods) and then mean centered



4

onto the eigenvectors.  When plotted the 72 samples using the first two principal components, two distinct
clusters are apparent with AML66 in the wrong cluster (Figure 5).

In addition, we studied whether each of the 40,000 individual near-optimal “chromosomes” could
classify as well as the top 50 genes.  Each test set sample was classified 40,000 times as either AML or
ALL using 3 nearest training set neighbors by the KNN method using a majority rule (2 or 3 must agree).
Interestingly, three AML samples (AML54, AML60, and AML66) were classified as ALL more than 50%
of the time (Figure 6).  Among the three, AML66 was misclassified 93% of the time.  Furthermore, none
of the 40,000 individual near-optimal “chromosomes” correctly classified more than 32 of the 34 test set
samples.  This result suggests that the individual near-optimal “chromosomes” are not as effective as the set
of top-ranked genes (e.g. the top 50) that were selected from these “chromosomes”.  This instability may be
due to inherent noise present in these “chromosomes”.

Discussion
It is clear that not all genes are relevant to sample discrimination.  Thus, identification of a subset of
informative genes is important.  The current approaches for selecting a subset of informative genes can be
summarized by two categories, univariate and multivariate.  An univariate approach examines one gene at a
time whereas a multivariate approach considers several genes simultaneously.  The widely used
discriminative measures include the Student’s t statistics or similar measures (Golub et al., 1999),
discriminant analysis (see, e.g. Vandeginste et al., 1998), neural network (Toronen et al., 1999), support
vector machines (for a tutorial, see Cortes & Vapnik, 1995; Ben-Dor et al., 2000;), and nearest neighbors
(Li et al, 2001a).  Alternatively, when selection of individual genes is not carried out, a few “supergenes”
are constructed as the informative genes using multivariate approaches such as the principal component
analysis (PCA).

Univariate approaches may fail to identify sets of genes that are discriminative jointly, but not
singly.  We have shown that the frequency of co-selection of certain sets of genes (e.g. PABC for genes A, B,
and C) can be many times higher than the product of their individual frequency of selection (PA×PB×PC) (Li
et al., 2001a & 2001b), indicating the multivariate nature of their contribution to discrimination.

Many supervised pattern recognition methods have been employed as discrimination tools.  Some
methods (such as discriminant analysis) define a boundary between classes explicitly while others (such as
the KNN) do so implicitly.  This distinction may have an implication for sample classification, especially
when samples can be heterogeneous in nature, such as tumors.  It is clear that tumor subtypes may exist
within known classes.  Discriminative functions that can work well in the presence of such heterogeneity
are preferred.  Subsequently, hidden subcategories in the sample may be discovered and may prove to be
etiologically or prognostically important.

The last important issue is that microarray data consist of a large number of genes (parameters)
and a small number of samples and as a result, many distinct and equally effective classifiers may exist for
the same training set.  Most of current literature methods seek a single subset of discriminative genes.
Often, the informative genes identified for a given data set vary from method to method.

The GA/KNN method selects many subsets of discriminative genes from which a single predictor
set is formed by examining the frequency of gene selection.  This simple approach of gene selection
appears to function well.  The top-ranked genes (e.g. the top 50) apparently outperform the individual
subsets of genes.  Furthermore, the GA/KNN method accommodates the heterogeneity within the classes,
since the KNN method finds a boundary between classes implicitly.  This unique ability of KNN facilitates
subclass discovery.

In conclusion, many methods have been developed for sample classification based on gene
expression data.  As the quantitative aspects of the microarray technology improve and computational
methods that mine the resulting large data set are developed further, the technology will have a great
impact on biology, toxicology and related areas.
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Fig. 1 The statistical z-score with which each of the 5,455 genes is selected among the 40,000 solutions.
Let, Z = [Si-E(Si)]/σ, where Si is the number of times genei is selected, E(Si), is the expected number of
times genei is selected, σ is the square root of the variance.  Let, A = 40,000, P(genei) = d/5455, the
probability of genei being selected (if random).  Then, E(Si) = P(genei)·A, and σ = √ {P(genei)·[1-
P(genei)]·A}.  The two highest peaks in d = 5 were truncated.

Fig. 2.  Correlation between the z scores for two consecutive choices of d.  The z scores were calculated as
described in Fig. 1.
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Fig. 3.  Reproducibility of gene selection as represented by the correlation between the z scores from two
independent runs for the same d.  For each run, 20,000 solutions were obtained for each d.

Fig. 4.  Clustering analysis (Eisen et al., 1998) of the 72 leukemia samples and the 50 top-ranked genes that
were selected from all 5,455 genes by the GA/KNN method.
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Fig. 5.  Principal component analysis of the 72 samples based on the 50 top-ranked genes.  The first two
principal components are shown.

Fig. 6.  Percentage of being classified as ALL for the test set samples.  Each test set sample was classified
by three training set neighbors using the top 50 genes by KNN method.  A majority rule (2 or 3 must agree)
was applied.  Each sample was classified 40,000 times using each of the 40,000 solutions (near-optimal
“chromosomes”) obtained during the training process (see text for details).
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